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Two different techniques for the analysis of nonlinear, periodic eddy-current problems are compared using a 3-dimensional
benchmark problem. The methods are the parallel time periodic-finite element method and the harmonic balance fixed-point

technique.
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I. INTRODUCTION

THE TOPIC OF this investigation is to validate various
methods for the finite element analysis of nonlinear, 3-
dimensional eddy-current problems in which steady state
solutions are of interest. For this reason a basic single phase
transformer enclosed by a steel tank has been modeled. On
each limb of the core there is half of the primary and
secondary winding. To be as close to a practical application as
possible, the transformer primary winding is voltage driven.
Due to the highly permeable materials of the transformer one
has to deal with a nonlinear problem. The occurring time-
varying magnetic field induces eddy-currents in the tank walls
and hence additional losses. In this work the parallel time
periodic-finite element method (parallel TPFEM) [1], [2] and
the harmonic balance fixed-point technique (HBFP) [3]-[6] are
compared.

[I. FEM FORMULATION AND MODELLING

A. Parallel Time-Periodic Finite-Element Method

In case of the parallel TPFEM method, applying Galerkin
techniques to the differential equations resulting from the A-V
formulation, one obtains a system of nonlinear ordinary
differential equations:
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The matrix S is nonlinear due to its dependence on the
unknown vector X and hence on u, C is a constant coefficient
matrix, f is the right-hand-side vector.

By considering time periodic conditions X, =X, , all the
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nonlinear equations for one or half period are written as
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where n is the number of time steps in a (half) period, At is the
time interval, the subscript indicates the time step, and the
signs — and + in (2) correspond to the ordinary and half time-
periodic conditions, respectively. In the parallel TPFEM
[1], [2], the large nonlinear system of equations (2) is solved
by using parallel computing with pure message passing
interface (MPI) programming.

Adopting the Newton-Raphson (NR) method as a nonlinear
iteration method, the linearized equations of the TPFEM can
be written as
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where Ax; is the increment of X; and G; is the residual. For
solving the nonsymmetric linear system (3), we adopt the
BiCGstab2 method and the localized ILU preconditioning.

B. Harmonic Balance Fixed-Point Method

In case of the harmonic balance fixed-point method [3], [4],
applying Galerkin techniques to the differential equations
resulting from the T,¢—¢ formulation, one obtains a system

of nonlinear, ordinary differential equations of the form
d
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S depends on the resistivity p and is hence independent of X
and time ¢. The mass matrix C depends on the permeability u
and hence on X and ¢. The vector X gathers the unknowns, f is
the right hand side vector. Using the HBFP technique [5], the
equation system becomes
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where u;,) is the fixed-point reluctivity at the s-th iteration

step and &, denotes the m-th harmonic of the Fourier
transform.

Since the nonlinearity is due to the dependence of C(x) on
the solution, it is obvious to define a field independent fixed-
point permeability upp. Hence, one has to solve the given
equation system in each iteration step s. The voltage excitation
of the coils is implemented as described in [7].

III. NUMERICAL INVESTIGATIONS

To compare these two methods, a single phase transformer
was modelled as a benchmark problem. The finite element
models of the different methods should be as close as possible
to each other. Half of the primary and of the secondary
winding are wound around each limb with the two halves
connected in series. In this approach the coils are assumed to
be voltage driven. The main parameters of the transformer are
given in TABLE 1.

TABLE I
MAIN PARAMETERS OF THE TRANSFORMER

Values Unit  Primary winding  Secondary winding
Voltage Uy ms \'% 6600 210
Current L A 3.03 95.2
Resistance R Q 21.7 0.0163
No. of turns N 1 1886 60
Frequency f Hz 50

FE-model HBFP

FE-model parallel TPFEM
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Fig. 3: Eighth of the transformer
model for the HBFP

Fig. 2: Eighth of the transformer
model for the parallel TPFEM

Fig.2 and Fig. 3 show the finite element mesh of the
problem domain. With the A-V formulation used the coils are
modelled with finite elements. With the T,¢—¢ formulation

the coils need not to be included in the mesh. The nonlinearity
of the core and tank material is considered by two different
B-H characteristics.

IV. NUMERICAL RESULTS

Fig. 4 shows the normalized deviation of the computed

currents of the coils when the coils are voltage driven.
Relative deviation of currents normalized with max current value
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The parameters in the table are U, for the root mean square
value of the excitation voltage, I,,,, for the given current, R
indicates the resistance of the windings, N is the number of
turns and f'is the operating frequency.
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Fig. 1. Basic transformer model.

Fig. 1 shows the basic transformer design with the steel tank
surrounding the transformer. If the excitation of the coils is
sinusoidal, the resulting time varying magnetic field causes
eddy currents in the highly permeable, conductive metal
housing and hence additional losses. These eddy-current losses
are to be investigated. Because of symmetry only an eighth of
the problem domain is to be included in the finite element
model.
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Fig. 4: Comparison of the calculated currents of the coils.

Further results will be presented at the conference and in the

full paper.
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